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Abstract: In this paper, to improve the efficiency of welding and user convenience in the 
shipbuilding industry, a PC-based off-line programming (OLP) technique and the development 
of a robot transfer unit are presented. The developed OLP system is capable of not only robot 
motion simulations but also automatic generations of a series of robot programs. The strength 
of the developed OLP system lies in its flexibility in handling the changes of the welding 
robot’s target objects. Moreover, for a precise transfer of the robot to a desired location, an 
auxiliary mobile platform named a robot-origin-transfer-unit (ROTU) was developed. To 
enhance the cornering capability of the platform in a narrow area, the developed ROTU is 
equipped with 2 steering wheels and 1 driving wheel. Both the OLP and the ROTU were field-
tested and their performances were proven successful. 
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1. INTRODUCTION 
 
The shipbuilding industry currently faces the 

problems of an increase of the average age of 
employees, work-related musculoskeletal disorders of 
workers, a shortage of skilled workers, and 
environmental protection-related issues. To solve 
these problems, the shipbuilding industry is steadily 
increasing the use of robots in various areas of 
production lines. Especially, the use of welding robots 
in hull-assembly lines has yielded a big productivity 
improvement and has partially solved these problems 
[1,2,6,14,15,17]. 

In a grand-assembly line (see Fig. 1), three methods 
of transferring a welding robot to a work place can be 
pursued: a manual transfer in which a worker carries 
or drags a robot to a welding spot, a semi-automatic 
transfer (the method discussed in this paper), and a 
fully automatic approach. In the fully automatic 
approach, a welding robot is hung down from a 

gantry-type manipulator (a Cartesian robot), so that 
six degrees of freedom of the welding torch can be 
assured. The manual and fully automatic approaches 
are not preferred in a grand-assembly welding. The 
reasons are that a manual move consumes too much 
time and excessive human effort for individual 
transferences, and that a fully automatic transference 
causes an unwanted vibration of the gantry, in 
moving the welding robot from one place to another, 
which subsequently deteriorates the welding quality. 
Accordingly, a semi-automatic approach is widely 
used. The semi-automatic approach proposed in this 
paper uses a specially designed Robot Origin Transfer 
Unit (ROTU), which is a type of mobile platform that 
can carry the welding robot. However, in the case of  

 

 

Fig. 1. A workcell (magnified) in a grand-assembly line. 
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semi-automatic transference, defining the base position 
of the welding robot for a given workcell and moving 
the welding robot to the pre-defined base position are 
difficult. To overcome these difficulties, an off-line 
programming (OLP) approach to computing the base 
position and the steering control of the ROTU for 
hull-assembly lines are investigated in this paper. 

The OLP approach is a programming method that 
utilizes off-line simulation techniques, mimicking the 
real world, which are set up in advance. The 
usefulness of OLP is well explained in the literature 
[2,3,7,13]. The advantages of adopting an OLP 
approach are: i) effective programming of robot-
command logics with debugging facilities; ii) easy 
verification of the validity of a robot program through 
simulation and visualization; iii) organized 
documentation with appropriate programs through 
simulation models; iv) reuse of existing robot 
programs and easy application to other objects; and v) 
the cost independence of programming owing to the 
fact that production can be continued during 
programming. The developed off-line programs were 
based on object-oriented programming (OOP) using 
the virtual reality modeling language (VRML) and 
various functions including robot simulations.  

The purposes of the developed ROTU are first to 
carry the welding robot to the origin (base position) of 
a given workcell and then to set the position and 
orientation of the welding robot correctly according to 
CAD data. The ROTU has one front wheel and two 
rear wheels. The front wheel is used for steering 
purposes and the rear wheels are for both steering and 
driving. There are numerous studies regarding mobile 
robots including various applications [5,11,19,20]. 
Outstanding results include the work of Murray [9,10] 
in investigating the steering problem of a mobile robot 
under nonholonomic constraints, and Bui et al. [1] in 
demonstrating a welding application using a two-
wheeled mobile robot. Previous studies show that one 
drive wheel and one steering wheel are enough to 
steer the mobile robot to a desired position; that is, a 
mechanism of two wheels may be usable. However, 
because of the narrow area in a workcell, collisions 
between the robot body and the surrounding stiffener 
can occur easily during autonomous navigations. 
Therefore, motion planning such as that of the 
sinusoidal input method cannot be applied to welding 
robots in the shipbuilding industry. In the present 
study, a three-wheel mobile platform was adopted to 
increase the steering capability, flexibility, and safety 
of the robot in narrow areas. 

The contributions of this paper are the following. 1) 
A methodology to apply to a welding robot system for 
variously shaped objects in hull-assembly lines is 
suggested; 2) a PC-based OLP using recently issued 
algorithms, such as the VRML for the simulation 
environment and computing techniques for the 

automatic generation of robot programs, was 
developed; 3) a practical implementation of a mobile 
robot with two steering wheels using fuzzy reasoning 
is discussed.  

The paper is structured as follows: In Section 2, the 
configuration of the welding robot system in a hull-
assembly line is described. In Section 3, the PC-based 
OLP is demonstrated. Section 4 describes the ROTU 
and its control algorithm. In Section 5, the issues 
raised during implementation are discussed, and 
Section 6 concludes the paper 

 
2. PC-BASED OLP 

 
Currently, robot production enterprises provide 

commercialized software that includes developed 
robot simulation tools. However, applying this 
commercialized software to ship construction requires 
too much time and effort, and therefore utilization of 
the commercial software is not suitable for 
shipbuilding purposes. Instead, because of higher 
expectations for computer systems and the rapid 
development in graphic interfaces, nowadays, 
establishing PC-based OLP has become easier and has 
come to be preferred. Therefore, using OLP for robot 
systems is suitable for work in the shipbuilding yard, 
because it is more economical than commercial 
software that is provided by robot companies.  

 
2.1. System configuration 

Fig. 2 shows a typical welding process configu-
ration, which is composed of a welding robot, a 
controller, welding equipment, and an on-site 
industrial computer. Because the size and shape of 
workpieces in the shipbuilding industry vary greatly, a 
6-axis articulated robot is generally used for the 
purpose of welding. The robot controller consists of a 
Pentium II processor, three motor-interface boards, 
and a digital signal processing board. Because one 
motor-interface board controls 4 motors, room for 
additional control boards for auxiliary actuators has 
been reserved. The robot is equipped with a touch 
sensor to compensate for the difference between CAD 
data and the actual shape of the workpieces. To 
increase the path-tracking ability of the robot, an arc 
sensor is also used. 

The OLP system creates job programs based on 
pre-defined movements and welding macro data. Fig. 
3 shows the OLP configuration for grand-assembly. 
The OLP system is equipped with the following 
functions: 1) modeling of the shape of a workpiece 
manually or via the CAD interface; 2) extraction of 
the weld seam from the shape database; 3) performing 
of nesting for all weld seams; and 4) generation of job 
programs for welding robots. The job program 
consists of a sequence of movement commands for 
welding robots and welding conditions. 
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Fig. 2. Configuration of the welding robot system. 
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Fig. 3. Flow chart of the OLP for a grand-assembly. 
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Fig. 4. The structure of the developed PC-based OLP. 

 
2.2. Robot simulation using VRML 

The utilized VRML is a 3D graphic language, 
which expresses objects and their motions in a space 
of proper dimensions, and which is useful in 
constructing a virtual environment on a PC [4]. The 

salient features of the VRML are as follows: first, it is 
easier to interpret because the text is expressed in a 
grammatical structure of functions; second, one can 
easily obtain VRML models from other CAD software, 
because converting a CAD drawing to a VRML model 
is possible in most 3D CAD software; third, the 
VRML model contains vertex data, which makes it 
easy to extract useful specific point information; 
fourth, because the 3D objects are modeled by VRML, 
which can be shown on the Internet, OLP using the 
Internet is an option. 

Fig. 4 illustrates the structure of the developed PC-
based OLP system. The user screen consists of four 
fields for user-friendly interface: the set-up menus, the 
main graphic simulation screen, a jog panel for off-
line teaching, and a message window. The menu bar 
consists of a CAD interface, a block arranging 
algorithm, a path planning algorithm, and an 
automatic-robot-program generator. 

To render a robot, a robot initialization file is used. 
The robot initialization file contains the data of the 
robot body modeling, the link parameters, the limit 
values of individual joints, and the home position data. 
In addition, the user can arbitrarily specify the robot 
base position, so that the initial position of the robot 
system can be easily set. Also, through the 
manipulation of kinematics data, the base coordinate 
frame can be easily placed at a desired position. 
Hence, the reachability of the end-tool and possible 
collisions with surrounding parts can be easily 
examined through simulations in a virtual environ-
ment. 

Two types of simulation modes are provided: a 
teaching mode and an execution mode. Robot 
teaching tells the robot what to do. Because the 
operator can easily move the robot in various motions 
with via-points using the teaching mode, this mode is 
very helpful to operators. The teaching mode includes 
two jog functions: a joint jog function that moves the 
joint actuators in relation to the joint coordinates, and 
a coordinate jog function that moves the robot 
according to a given coordinate frame, which usually 
is defined as the left bottom edge of a workpiece. In 
the program execution mode, all of the robot motions 
written to a standard program are automatically, 
simultaneously, and continuously executed. Fig. 5 
depicts the simulation screen of a grand-assembly, and 
Fig. 6 shows a real photo of a grand-assembly.  

The results of simulated motions will approach to 
those of the real ones, if the algorithms in the 
simulation program including kinematics, robot 
motion planning, and the robot language interpreter 
are identical to those of the real ones. Because the 
sampling time of the control input is 16 msec whereas 
the interpolation time of a robot motion is 5 msec, the 
robot motion is updated every 16 msec in simulations. 
Also, multi-threads called for by a 16 msec timer are  



Off-Line Programming in the Shipbuilding Industry: Open Architecture and Semi-Automatic Approach 35 
 

 
Fig. 5. A grand-assembly (simulation screen). 

 

 
Fig. 6. A photo depicting a real grand-assembly. 

 
used for multi-robot simulation. In this case, one 
thread can initiate some of the functions shared with 
other threads, such as the robot language interpret 
function, the motion planning function, and the 
starting command function, at the same time, which 
results in memory leakage or malfunction. So the 
multi-threads and the CCriticalSection of VC++ work 
together. 

To implement various 3D solid models and motions 
on a PC, a structured graphical representation of the 
nodes, illustrated as in Fig. 7(a), is acquired from [18]. 
Fig. 7(b) shows the 3D robot body and individual link 
models. Each link can be replaced with a newly 
designed link without influencing other graphic 
objects. The 3D solid model of each link is defined as 
m_Arm[n], whereas each link’s motion engine is 
defined as myRotor[n], where n represents the n-th 
link. The term m_Arm[n],  is a variable name that 
stores the n-th link model, and the term myRotor[n] is 
the variable name of the associated motion engine. 
The basic configuration is a parallel combination of 
the motion engine and the link model of each link. 
Accordingly, the motion of the ( ni + )th link, where 

...,3,2,1=n , is affected by the movement of the i -th 
link. Auxiliary graphic objects such as axes, texts, and  

m_pSceneRoot

m_pAxisSep m_pLineGantrySep

GantrySep

m_pRobotTransform[0] gan_rotor

m_pRobot

m_Arm[0] m_Arm[1] m_Arm[n]transform[1]myRotor[0]
myRotor[1] myRotor[n]

transform[n]

m_pLoadBlockSep

m_pLoadBlockm_pBlockTrans
m_pBlockRotation

m_pLoadBlockSep

 
(a) A hierarchical representation of graphic nodes to 

realize simulation environment. 
 

m_Arm[0] m_Arm[1] m_Arm[2]

m_Arm[3] m_Arm[4] m_Arm[5]

m_Arm[6]

 
(b) 3D robot body and individual link models. 

Fig. 7. Simulation environment: graphic nodes and 
models. 

 
welding lines are added to the top-node defined as 
m_pSceneRoot directly, in order to be independent of 
the robot’s movements. For example, to display the 
axis of the teaching points and the welding line, 
m_pAxisSep and m_pLine are attached to the 
m_pSceneRoot node independently of the motion of 
the related nodes m_pLoadBlockSep and GantrySep, 
as shown in Fig. 7(a). The axis graphic node is added 
to the m_pSceneRoot node whenever the user 
introduces a new teaching point. The added axis 
graphic node is counted, and the entire axis in the 
simulation window has its own number. By clicking 
the axis in the simulation window, the simulation 
window displays the data of the selected teaching 
point. In the same way, the m_pLine node containing 
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the line graphic object is added to the m_pSceneRoot 
node. And, whenever the user selects a welding line, 
the line is displayed in the simulation window. 

 
2.3. Automatic generation of robot programs 

The automatic generation methodology of robot 
programs is enabled by Pettinaro [16]. In operating 
welding robots in a shipyard, the largest portion of 
time consumption lies in robot programming. 
Particularly, for workpieces of different shapes and 
sizes, more time is required to render the robot 
programs operable in real-time. To minimize time 
consumption, robot programs are often generated 
automatically from the welding information obtained 
from CAD data. First, according to the analysis of the 
shape of the workpiece, the shape can be represented 
in simple geometry such as that of a scallop, a hole, a 
horizontal line, a horizontal curve and a vertical line, 
and others. The programs for these simple geometries 
are pre-created and saved in the robot program D/B. 
When the workpiece is allocated to the robot system, 
the robot program generation algorithm divides the 
workpiece into a number of simple, pre-defined 
geometries. Next, the robot programs required for the 
respective simple geometries are selected from the 
D/B and combined together to complete the entire 
program for a given workpiece. The size of the 
workpiece from the CAD data is reflected in the 
teaching points in the program.  

Fig. 8 is a flow chart representing automatic robot 
program generation. The robot program generation 
algorithm is composed of 5 sub-routines: input data 
conversion, via-point creation, robot program 
selection using simple geometries, compilation of the 
combined robot programs of simple geometry, and 
robot program writing. The input data conversion 
routine creates teaching points for each seam of the 
work place by the methodology explained above. In 
the via-point creation routine, all of the via-points are 
calculated in such a way that no collision occurs in 
moving from one teaching point to another teaching 
point. The collision-free path is obtained by pre-

simulation results that are obtained for all of the 
shapes of the workpieces. In the robot program 
selection routine, the simple geometries of a 
workpiece are matched to the respective robot 
programs. The writing program routine rewrites the 
robot program to fit it to the format of the robot 
language. Moreover, it sorts the teaching points 
according to number and matches each teaching point 
in the robot program to the respective position. 

 
2.4. Robot base positioning 

Determining the robot base position of a workcell 
via OLP is important. The primary aspects of the 
robot base in a grand-assembly are: 1) the robot base 
is located on the center between the left-bottom edge 
and the right-bottom edge; 2) the distance from a 
transversal stiffener is 700 mm; and 3) the robot base 
is parallel to the workpiece plate. However, the 
determination of the robot base of a workcell varies 
according to the shape of a workpiece. For example, if 
the transversal stiffener has a bracket of the direction 
to the robot body, the robot base has to be moved 
backward to avoid collision. At this time, an OLP 
simulation is applied to decide whether the workpiece 
is weldable or not, and to modify the robot base 
position. After the robot base position is determined, 
the robot program obtained from the automatic robot 
program generator is calibrated to a job program 
according to the modified robot base. Finally, the 
modified robot base position is sent to the reference 
position of the ROTU and the modified job program is 
downloaded to the robot’s controller. 

 
3. ROBOT ORIGIN TRANSFER UNIT 

 
3.1. System description 

Table 1 summarizes the specifications of the servo 
motors used in the front and rear wheels. Other 
detailed information of the ROTU is collected in 
Table 2. Fig. 9 and Fig. 10 show the upper and lower 
views, respectively, of the developed ROTU. 

Fig. 11 is a schematic of the ROTU for the purpose 
of analysis. Because the frame is rigid, the component 
of 1V  in the 'y  axis must be equal to the 
component of 2V  in the 'y  axis. That is, 

0coscos 2211 =− αα VV ,                   (1) 

Table 1. Servo motor specifications. 
 Diameter Max. velocity Torque
Rear wheel 

driving 92 mm 52.1 m/min 9.8 Nm

Rear wheel 
steering 92 mm 62 rpm 11.5 Nm

Front wheel 
steering 107 mm 53 rpm 8.5 Nm
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Fig. 9. Upper view of the ROTU. 
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Fig. 10. Lower view of the ROTU. 
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Fig. 11. A schematic of the ROTU. 

 
where 1α  and 2α  are the front- and rear-wheel 
steering angles, respectively. Because the two 
perpendicular axes of the moving directions of the 

front and rear wheels intersect at an instantaneous 
center of rotation, the angular velocity of the ROTU is 
obtained as 
 

a
VV

dt
d 2211 sinsin ααϕϕ

−
== ,             (2) 

 
where ϕ  is the angular displacement of the robot 
body and a  is the body length. Let the components 
of the velocity of the body center in the 'x  and 'y  
directions be xV  and yV , respectively. Then, they 
are  
 

ϕα cVVx −−= 22 sin ,                     (3) 

22 cosαVVy = ,                          (4) 
 

where c  is the distance between the body center and 
the driving wheel. Therefore, the velocity of the body 
is calculated, using (3) and (4), as 
 

22
yxb VVV +=  

2

2

22
2

2
2

sincos 






 +
+=

V
VcV αϕα .        (5) 

 
And the heading directional angle is defined as  
 

αϕψ −= ,                              (6) 

where ( )yx VV /tan 1−=α 
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If we define αα −=′ , then, (6) can be rewritten as  

αϕψ ′+= ,                             (7) 

where 
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α
ϕα

α
V
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. Finally, the 

absolute velocity of the ROTU is 

.sin
,cos

ψ
ψ

b

b

Vy
Vx

=
=

                            (8)
 

Here, let the state vector be Tyxz ],,[ ϕ= ; then, the 
state equation is obtained as  

( )ϕαα ,,, 212Vgz = ,                      (9) 

where 

Table 2. Details of the ROTU. 
Weight Max. pulling force Static pulling force Allowed load Length Width Height 

72.5 kg 549.9 N 183.3 N 200 kg 774 mm 586 mm 209 mm 
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3.2. Steering control using fuzzy reasoning 

In this paper, a novel two-mode control scheme is 
proposed, as depicted in Fig. 12. The first mode is the 
steering control mode that steers x  and ϕ  to their 
desired values. The second mode is the driving control 
mode, in which the y-directional movement is 
controlled using the rear wheel driving motor only. 
The migration of the ROTU to its designated position 
defined via the OLP is done after the welding robot is 
lowered to the ROTU. Fig. 13 shows a top view of the 
ROTU commissioned in a workcell. 
The following variables are introduced: ix  is the 
initial X-directional position; iy  is the initial Y-
directional position; iϕ  is the initial rotational angle; 

fx  is the target X-directional destination position; 

fy  is the target Y-directional destination position; 

and fϕ  is the target rotational angle. Then, the 
control problem is defined as a problem of steering 
the ROTU from },,{ iii yx ϕ  to },,{ fff yx ϕ . The 
welding robot’s base position is defined as {O}, as 
shown in Fig. 13, and then, the destination position of 
the ROTU is 0=fx , 0=fy , and 0=fϕ  in the 
reference frame {O}. 

 
3.2.1 The steering control 

As shown in Fig. 13, the controller measures the 
distance between the ROTU and the longitudinal 
stiffener using four ultrasonic distance sensors. And 
then the initial position, ix , is obtained as 

)}(){(
2
1

4321 ddddxi +−+= .            (10) 

When the system is used in an open-type workcell, in 
which the left or right longitudinal stiffener does not 
exist, the equation 

)}({
2
1

21 ddHWxi +−−=                (11) 

is used, where W is the width of the workcell and H is 
the width of the ROTU. Also, the rotational angle iϕ  
of the ROTU is defined as 
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Fig. 12. Block diagram of the two-mode control scheme. 
 

Fig. 13. The robot origin transfer unit operating in a 
workcell. 
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Fig. 14. Relation between the two steering angles and the 

robot body direction. 
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where 1d , 2d , 3d , and 4d  are the distances 
measured by four ultrasonic distance sensors. Then, it 
is necessary to check whether the ROTU is inside or 
outside the collision area, determined by using the 
ultrasonic proximity sensor signals, 5d  and 6d  
(see Fig. 13). If the ROTU enters a collision area, the 
collision avoidance algorithm can be executed. 
Otherwise, the steering control for },{ ϕx  initiates. 
While the ROTU is working, the controller monitors 

5d  and 6d  to prevent a possible collision. 
To simplify the steering problem, the driving 

velocity, 2V , is fixed as ±50 mm/sec. And if we 

define a reduced-order state variable as T
s xz ],[ ϕ= , 

then the control problem of (9) is simplified as 

( )ϕαα ,, 21ss gz = ,                      (13) 

where 

( )

2
2 2 2

2 2
2

1 1 2 2

sincos cos

sin sin
s

c VV
Vg

V V
a

ϕ αα ψ

α α

 
 + +    ⋅ =  

 −
  

. 

In (13), the control inputs are the front wheel steering 
angle, 1α , and the rear wheel steering angle, 2α . 
Both of the steering angles are calculated by fuzzy 
reasoning. The two inputs of this fuzzy reasoning are 
x  and ϕ , the current pose of the ROTU. The fuzzy 
rule is based on the geometric relation of the steering 
angles and the body rotation direction, as shown in 
Fig. 14. For positive 1α  and 2α , if 21 αα > , then 
the ROTU rotates in the clockwise direction, and if 

21 αα < , then the ROTU rotates in the 
counterclockwise direction. The fuzzy membership 
function is defined as a triangular type. The derived 
fuzzy rules are shown in Table 3. In a defuzzification 
algorithm, the center of mass method is applied to the 
fuzzy reasoning. At each sampling time, the current 
position and steering angle are calculated. The 
obtained steering angle is used as a reference value in 
steering. 
 
3.2.2 The driving control 

With the setting of all of the steering wheels to 0, 
the ROTU moves only forward and backward until the 
ultrasonic approximate sensor sends a signal to the 
controller. When the ultrasonic approximate sensor is 
tuned to detect the constant distance, the signal of the 
approximate sensor indicates the Y-directional 
destination position. 

Table 3. Fuzzy rules for adjusting steering angles (NB 
= negative big; NS = negative small; ZO = 
zero; PS = positive small; and PB = positive 
big). 

(a) Front-wheel steering angle. 
ϕ

x  
NB NS ZO PS PB 

NB PB PB PB PS ZO 
NS PB PB PB PS ZO 
ZO PB PS ZO NS NB 
PS ZO NS NB NB NB 
PB ZO NS NB NB NB 

(b) Rear-wheel steering angle. 
ϕ

x  
NB NS ZO PS PB 

NB ZO PS PB PB PB 
NS ZO PS PB PB PB 
ZO NB NS ZO PS PB 
PS NB NB NB NS ZO 
PB NB NB NB NS ZO 

 
Table 4. Comparison of robot setting times. 

 The developed 
ROTU 

Maker A’s 
ROTU 

Human 
operator

Setting 
time 16 sec 21 sec 30 sec 

ROTU: robot origin transfer unit 
 

Ultrasonic distance sensor

Forward driving mode ?

or

4321 ,,, dddd

boundcollisiond _1 <

boundcollisiond _3 <
or

boundcollisiond _2 <

boundcollisiond _4 <

Backward driving Forward driving

Continue driving

Yes No

 
Fig. 15. The collision avoidance algorithm. 

 
3.3. Collision avoidance algorithm 

The numbering of the subsection should take the 
above form. A collision-free path for the robot is 
essential to assure the safety and efficiency of the 
process [12]. Therefore, to this end, a simple but 
practical collision avoidance algorithm was developed, 
as shown in Fig. 15. In measuring the distances 1d , 
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2d , 3d , and 4d  using four ultrasonic displacement 
sensors, the controller avoids a possible collision of 
the robot body. The dominant variables for detecting 
collision are 1d  and 3d  for forward movement, and 

2d  and 4d  for backward movement. If these 
distances are included in the collision area, the driving 
direction is switched to another direction. The 
collision area is predefined, considering the size of the 
ROTU and the working space of the robot, via OLP. 

 
4. EXPERIMENTAL RESULTS 

 
4.1. Implementation 

The tools utilized in OLP are as follows. The PC 
O/S of a Pentium IV 2.4 GHz processor with 
Windows 2000 was used for computation, and Visual 
C++ was used for programming. Open Inventor was 
used to implement the graphic environment for the 
OLP. Because Open Inventor is a graphic library that 
provides collision detection algorithms, it is useful in 
constructing graphic environments. To increase the 
efficiency of the graphic processing ability, the 
selection of a video card is very important. Hence, the 
implemented video card has a 64 MB frame buffer 
memory and a 128 MB texture memory. Also, the 
video card was optimized to process Open GL. On 
account of OOP, the user can selectively use each 
function of OLP, which automatically performs all 
functions in real time. Considering users’ convenience, 
for the grand- and mid-assembly welding robot 
systems, robot simulation and robot program 
automatic generation functions were mainly used. 

The ROTU is composed of a control panel, a 
mobile robot, and a remote control box, as shown in 
Fig. 16. The controller employs the Intel Pentium 
MMX 233 MHz, 80Mb solid-state disk, which 
prevents vibration and dust, a commercial 4-axis 
motion controller, a signal I/O board, and the 
Windows NT Embedded O/S. The encoder used in the 
controller is an incremental type, and the resolution is 
4,000 pulse/rev. Because the Windows NT Embedded 
O/S allows the user to select the optimized component 
in implementing a controller, the booting time and the 
O/S size can be reduced significantly [8]. The 
components and registry of our system are depicted in 
Fig. 17. 

 
4.2. Experimentation 

The experimental results are shown in Fig. 18. The 
sampling time was 300 msec. The experiments were 
performed for the cases of the ROTU’s initial position 
and rotation offset value that occurs frequently while a 
robot operator unloads a welding robot in a workcell. 
Table 4 compares the setting times of the developed 
ROTU and Maker A’s ROTU with that of a human 
operator. 

I/F board

Motion control board

Servo ON

Industrial PC
: Pentium 2 processor

Servo error

D/I 4EA

D/O 4EA

U1, U2 V W

Control panel

Remote control pendant
D/O 5EA

Welding robot controller

Ultrasonic distance sensor
4EA

Ultrasonic approximity sensor
2EA

Motor encoders

Home/Limit sensor  4EA

D/I 2EA

A/D 1~5V

D/I 8EA

D/I 4EA

Encoder signal

PC-
BUS

 
 
Fig. 16. Hardware architecture. 

 

- Workstation System
- Standard HAL
- EIDE
- VGA
- Keyboard

Minimal OS Configuration

- Lan manager Workstation Service
- NT LM Security Service
- WinSock
- TCP/IP

Networking Capability

- DiskOnChip As Disk
- OLE/COM
- Manual Shell
- FTP
- Regsrv32

Additional Component

- Motion Control Board
- Data Acqusition I/F Board
- HOTU Application

User Made Component

Operating System

 
Fig. 17. Windows NT embedded systems of the 

controller. 
 

5. CONCLUSIONS 
 
To improve the user convenience and efficiency of the 
welding robots in the shipbuilding industry, a PC-
based off-line programming methodology and a robot 
transferring unit, named ROTU, were developed. The 
developed OLP system provides both robot 
simulations and automatic robot program generation. 
Because the graphics were made in a VRML 
environment, the developed OLP is highly compatible 
with other software, which allows the use of OLP 
through the Internet. Also, the mobile-robot-type 
ROTU is very efficient in shortening the setting time 
of the welding robot in various-size-and-shape 
workcells. The quality and stability of the suggested 
algorithms were verified through experiments. In 
short, OLP helps operators to access the robot system 
easily and the ROTU helps them to reduce their 
physical efforts. The methodology outlined in this 
paper is practical and can easily be applied to other 
areas. 
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(a) ix  = 90 mm and iϕ  = 0°. 
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(b) ix  = 180 mm and iϕ  = 0°. 
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(c) ix  = -9 mm and iϕ  = 10°. 
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(d) ix  = 30 mm and iϕ  = -10°. 

 
Fig. 18. Experimental results. 
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