
32 Ji-Hyoung Lee, Chang-Sei Kim, and Keum-Shik Hong

Off-Line Programming in the Shipbuilding Industry : Open Architecture

and Semi-Automatic Approach

Ji-Hyoung Lee, Chang-Sei Kim, and Keum-Shik Hong*

Abstract: In this paper, to improve the efficiency of welding and user convenience in the
shipbuilding industry, a PC-based off-line programming (OLP) technique and the development
of a robot transfer unit are presented. The developed OLP system is capable of not only robot
motion simulations but also automatic generations of a series of robot programs. The strength
of the developed OLP system lies in its flexibility in handling the changes of the welding
robot’s target objects. Moreover, for a precise transfer of the robot to a desired location, an
auxiliary mobile platform named a robot-origin-transfer-unit (ROTU) was developed. To
enhance the cornering capability of the platform in a narrow area, the developed ROTU is
equipped with 2 steering wheels and 1 driving wheel. Both the OLP and the ROTU were field-
tested and their performances were proven successful.

Keywords: Open architecture, off-line programming, mobile manipulator, virtual reality
modeling language, containership building.

1. INTRODUCTION

The shipbuilding industry currently faces the

problems of an increase of the average age of
employees, work-related musculoskeletal disorders of
workers, a shortage of skilled workers, and
environmental protection-related issues. To solve
these problems, the shipbuilding industry is steadily
increasing the use of robots in various areas of
production lines. Especially, the use of welding robots
in hull-assembly lines has yielded a big productivity
improvement and has partially solved these problems
[1,2,6,14,15,17].

In a grand-assembly line (see Fig. 1), three methods
of transferring a welding robot to a work place can be
pursued: a manual transfer in which a worker carries
or drags a robot to a welding spot, a semi-automatic
transfer (the method discussed in this paper), and a
fully automatic approach. In the fully automatic
approach, a welding robot is hung down from a

gantry-type manipulator (a Cartesian robot), so that
six degrees of freedom of the welding torch can be
assured. The manual and fully automatic approaches
are not preferred in a grand-assembly welding. The
reasons are that a manual move consumes too much
time and excessive human effort for individual
transferences, and that a fully automatic transference
causes an unwanted vibration of the gantry, in
moving the welding robot from one place to another,
which subsequently deteriorates the welding quality.
Accordingly, a semi-automatic approach is widely
used. The semi-automatic approach proposed in this
paper uses a specially designed Robot Origin Transfer
Unit (ROTU), which is a type of mobile platform that
can carry the welding robot. However, in the case of

Fig. 1. A workcell (magnified) in a grand-assembly line.

 Manuscript received June 15, 2004; revised January 17,
2005; accepted January 27, 2005. Recommended by Editor-in-
Chief Myung Jin Chung. This work was supported by the
Ministry of Science and Technology of Korea under a program
of the National Research Laboratory, Grant number NRL M1-
0302-00-0039-03-J00-00-023-10 and Research Center for
Logistics Information Technology, Pusan National University.
 Ji-Hyoung Lee, Chang-Sei Kim, and Keum-Shik Hong are
with the School of Mechanical Engineering, Pusan National
University, San 30, Jangjeon-dong, Gumjung-gu, Busan 609-
735, Korea. Tel: +82-51-510-2454, Fax: +82-51-514-0685,
(e-mails: jihylee@hanafos.com, coriolis@naver.com, kshong
@pusan.ac.kr)
* Corresponding author.

International Journal of Control, Automation, and Systems, vol. 3, no. 1, pp. 32-42, March 2005

Off-Line Programming in the Shipbuilding Industry: Open Architecture and Semi-Automatic Approach 33

semi-automatic transference, defining the base position
of the welding robot for a given workcell and moving
the welding robot to the pre-defined base position are
difficult. To overcome these difficulties, an off-line
programming (OLP) approach to computing the base
position and the steering control of the ROTU for
hull-assembly lines are investigated in this paper.

The OLP approach is a programming method that
utilizes off-line simulation techniques, mimicking the
real world, which are set up in advance. The
usefulness of OLP is well explained in the literature
[2,3,7,13]. The advantages of adopting an OLP
approach are: i) effective programming of robot-
command logics with debugging facilities; ii) easy
verification of the validity of a robot program through
simulation and visualization; iii) organized
documentation with appropriate programs through
simulation models; iv) reuse of existing robot
programs and easy application to other objects; and v)
the cost independence of programming owing to the
fact that production can be continued during
programming. The developed off-line programs were
based on object-oriented programming (OOP) using
the virtual reality modeling language (VRML) and
various functions including robot simulations.

The purposes of the developed ROTU are first to
carry the welding robot to the origin (base position) of
a given workcell and then to set the position and
orientation of the welding robot correctly according to
CAD data. The ROTU has one front wheel and two
rear wheels. The front wheel is used for steering
purposes and the rear wheels are for both steering and
driving. There are numerous studies regarding mobile
robots including various applications [5,11,19,20].
Outstanding results include the work of Murray [9,10]
in investigating the steering problem of a mobile robot
under nonholonomic constraints, and Bui et al. [1] in
demonstrating a welding application using a two-
wheeled mobile robot. Previous studies show that one
drive wheel and one steering wheel are enough to
steer the mobile robot to a desired position; that is, a
mechanism of two wheels may be usable. However,
because of the narrow area in a workcell, collisions
between the robot body and the surrounding stiffener
can occur easily during autonomous navigations.
Therefore, motion planning such as that of the
sinusoidal input method cannot be applied to welding
robots in the shipbuilding industry. In the present
study, a three-wheel mobile platform was adopted to
increase the steering capability, flexibility, and safety
of the robot in narrow areas.

The contributions of this paper are the following. 1)
A methodology to apply to a welding robot system for
variously shaped objects in hull-assembly lines is
suggested; 2) a PC-based OLP using recently issued
algorithms, such as the VRML for the simulation
environment and computing techniques for the

automatic generation of robot programs, was
developed; 3) a practical implementation of a mobile
robot with two steering wheels using fuzzy reasoning
is discussed.

The paper is structured as follows: In Section 2, the
configuration of the welding robot system in a hull-
assembly line is described. In Section 3, the PC-based
OLP is demonstrated. Section 4 describes the ROTU
and its control algorithm. In Section 5, the issues
raised during implementation are discussed, and
Section 6 concludes the paper

2. PC-BASED OLP

Currently, robot production enterprises provide

commercialized software that includes developed
robot simulation tools. However, applying this
commercialized software to ship construction requires
too much time and effort, and therefore utilization of
the commercial software is not suitable for
shipbuilding purposes. Instead, because of higher
expectations for computer systems and the rapid
development in graphic interfaces, nowadays,
establishing PC-based OLP has become easier and has
come to be preferred. Therefore, using OLP for robot
systems is suitable for work in the shipbuilding yard,
because it is more economical than commercial
software that is provided by robot companies.

2.1. System configuration

Fig. 2 shows a typical welding process configu-
ration, which is composed of a welding robot, a
controller, welding equipment, and an on-site
industrial computer. Because the size and shape of
workpieces in the shipbuilding industry vary greatly, a
6-axis articulated robot is generally used for the
purpose of welding. The robot controller consists of a
Pentium II processor, three motor-interface boards,
and a digital signal processing board. Because one
motor-interface board controls 4 motors, room for
additional control boards for auxiliary actuators has
been reserved. The robot is equipped with a touch
sensor to compensate for the difference between CAD
data and the actual shape of the workpieces. To
increase the path-tracking ability of the robot, an arc
sensor is also used.

The OLP system creates job programs based on
pre-defined movements and welding macro data. Fig.
3 shows the OLP configuration for grand-assembly.
The OLP system is equipped with the following
functions: 1) modeling of the shape of a workpiece
manually or via the CAD interface; 2) extraction of
the weld seam from the shape database; 3) performing
of nesting for all weld seams; and 4) generation of job
programs for welding robots. The job program
consists of a sequence of movement commands for
welding robots and welding conditions.

34 Ji-Hyoung Lee, Chang-Sei Kim, and Keum-Shik Hong

On-site industrial
computer

Robot body Controller and welding equipment

Off-line programming

Standard programs

Downloading
job programs Monitoring

Control

Fig. 2. Configuration of the welding robot system.

CAD to VRML 3D
model

transformation
Welding seam

nesting

Work document

Seam abstraction
Robot program

generation for an
assembly

If needed, robot
program verification

using simulation

If needed, robot
program calibration
to adjust assemblies’

real position

Transfer robot
program to robot’s

controller

Welding information
from welding D/B

CAD interface

Fig. 3. Flow chart of the OLP for a grand-assembly.

Message/Status view: error/warning, joint/base/
world tool end values

OLP dialog box: robot program open/edit/save,
 block selection, etc.

Menu view: CAD interface, path planning,
 robot program generation, etc.

Robot jog view: joint/base/world coord. Jog, etc.

Simulation view

Fig. 4. The structure of the developed PC-based OLP.

2.2. Robot simulation using VRML

The utilized VRML is a 3D graphic language,
which expresses objects and their motions in a space
of proper dimensions, and which is useful in
constructing a virtual environment on a PC [4]. The

salient features of the VRML are as follows: first, it is
easier to interpret because the text is expressed in a
grammatical structure of functions; second, one can
easily obtain VRML models from other CAD software,
because converting a CAD drawing to a VRML model
is possible in most 3D CAD software; third, the
VRML model contains vertex data, which makes it
easy to extract useful specific point information;
fourth, because the 3D objects are modeled by VRML,
which can be shown on the Internet, OLP using the
Internet is an option.

Fig. 4 illustrates the structure of the developed PC-
based OLP system. The user screen consists of four
fields for user-friendly interface: the set-up menus, the
main graphic simulation screen, a jog panel for off-
line teaching, and a message window. The menu bar
consists of a CAD interface, a block arranging
algorithm, a path planning algorithm, and an
automatic-robot-program generator.

To render a robot, a robot initialization file is used.
The robot initialization file contains the data of the
robot body modeling, the link parameters, the limit
values of individual joints, and the home position data.
In addition, the user can arbitrarily specify the robot
base position, so that the initial position of the robot
system can be easily set. Also, through the
manipulation of kinematics data, the base coordinate
frame can be easily placed at a desired position.
Hence, the reachability of the end-tool and possible
collisions with surrounding parts can be easily
examined through simulations in a virtual environ-
ment.

Two types of simulation modes are provided: a
teaching mode and an execution mode. Robot
teaching tells the robot what to do. Because the
operator can easily move the robot in various motions
with via-points using the teaching mode, this mode is
very helpful to operators. The teaching mode includes
two jog functions: a joint jog function that moves the
joint actuators in relation to the joint coordinates, and
a coordinate jog function that moves the robot
according to a given coordinate frame, which usually
is defined as the left bottom edge of a workpiece. In
the program execution mode, all of the robot motions
written to a standard program are automatically,
simultaneously, and continuously executed. Fig. 5
depicts the simulation screen of a grand-assembly, and
Fig. 6 shows a real photo of a grand-assembly.

The results of simulated motions will approach to
those of the real ones, if the algorithms in the
simulation program including kinematics, robot
motion planning, and the robot language interpreter
are identical to those of the real ones. Because the
sampling time of the control input is 16 msec whereas
the interpolation time of a robot motion is 5 msec, the
robot motion is updated every 16 msec in simulations.
Also, multi-threads called for by a 16 msec timer are

Off-Line Programming in the Shipbuilding Industry: Open Architecture and Semi-Automatic Approach 35

Fig. 5. A grand-assembly (simulation screen).

Fig. 6. A photo depicting a real grand-assembly.

used for multi-robot simulation. In this case, one
thread can initiate some of the functions shared with
other threads, such as the robot language interpret
function, the motion planning function, and the
starting command function, at the same time, which
results in memory leakage or malfunction. So the
multi-threads and the CCriticalSection of VC++ work
together.

To implement various 3D solid models and motions
on a PC, a structured graphical representation of the
nodes, illustrated as in Fig. 7(a), is acquired from [18].
Fig. 7(b) shows the 3D robot body and individual link
models. Each link can be replaced with a newly
designed link without influencing other graphic
objects. The 3D solid model of each link is defined as
m_Arm[n], whereas each link’s motion engine is
defined as myRotor[n], where n represents the n-th
link. The term m_Arm[n], is a variable name that
stores the n-th link model, and the term myRotor[n] is
the variable name of the associated motion engine.
The basic configuration is a parallel combination of
the motion engine and the link model of each link.
Accordingly, the motion of the (ni +)th link, where

...,3,2,1=n , is affected by the movement of the i -th
link. Auxiliary graphic objects such as axes, texts, and

m_pSceneRoot

m_pAxisSep m_pLineGantrySep

GantrySep

m_pRobotTransform[0] gan_rotor

m_pRobot

m_Arm[0] m_Arm[1] m_Arm[n]transform[1]myRotor[0]
myRotor[1] myRotor[n]

transform[n]

m_pLoadBlockSep

m_pLoadBlockm_pBlockTrans
m_pBlockRotation

m_pLoadBlockSep

(a) A hierarchical representation of graphic nodes to

realize simulation environment.

m_Arm[0] m_Arm[1] m_Arm[2]

m_Arm[3] m_Arm[4] m_Arm[5]

m_Arm[6]

(b) 3D robot body and individual link models.

Fig. 7. Simulation environment: graphic nodes and
models.

welding lines are added to the top-node defined as
m_pSceneRoot directly, in order to be independent of
the robot’s movements. For example, to display the
axis of the teaching points and the welding line,
m_pAxisSep and m_pLine are attached to the
m_pSceneRoot node independently of the motion of
the related nodes m_pLoadBlockSep and GantrySep,
as shown in Fig. 7(a). The axis graphic node is added
to the m_pSceneRoot node whenever the user
introduces a new teaching point. The added axis
graphic node is counted, and the entire axis in the
simulation window has its own number. By clicking
the axis in the simulation window, the simulation
window displays the data of the selected teaching
point. In the same way, the m_pLine node containing

36 Ji-Hyoung Lee, Chang-Sei Kim, and Keum-Shik Hong

calculating teaching point
and robot base position

robot program selection
according to seam type

and length

seam data

robot program D/B
ex: HLLine.pgm,
HSLine.pgm, ...

rule files and rpy files compile

Main program

program files
Fig. 8. A flow chart for the automatic program

generation.

the line graphic object is added to the m_pSceneRoot
node. And, whenever the user selects a welding line,
the line is displayed in the simulation window.

2.3. Automatic generation of robot programs

The automatic generation methodology of robot
programs is enabled by Pettinaro [16]. In operating
welding robots in a shipyard, the largest portion of
time consumption lies in robot programming.
Particularly, for workpieces of different shapes and
sizes, more time is required to render the robot
programs operable in real-time. To minimize time
consumption, robot programs are often generated
automatically from the welding information obtained
from CAD data. First, according to the analysis of the
shape of the workpiece, the shape can be represented
in simple geometry such as that of a scallop, a hole, a
horizontal line, a horizontal curve and a vertical line,
and others. The programs for these simple geometries
are pre-created and saved in the robot program D/B.
When the workpiece is allocated to the robot system,
the robot program generation algorithm divides the
workpiece into a number of simple, pre-defined
geometries. Next, the robot programs required for the
respective simple geometries are selected from the
D/B and combined together to complete the entire
program for a given workpiece. The size of the
workpiece from the CAD data is reflected in the
teaching points in the program.

Fig. 8 is a flow chart representing automatic robot
program generation. The robot program generation
algorithm is composed of 5 sub-routines: input data
conversion, via-point creation, robot program
selection using simple geometries, compilation of the
combined robot programs of simple geometry, and
robot program writing. The input data conversion
routine creates teaching points for each seam of the
work place by the methodology explained above. In
the via-point creation routine, all of the via-points are
calculated in such a way that no collision occurs in
moving from one teaching point to another teaching
point. The collision-free path is obtained by pre-

simulation results that are obtained for all of the
shapes of the workpieces. In the robot program
selection routine, the simple geometries of a
workpiece are matched to the respective robot
programs. The writing program routine rewrites the
robot program to fit it to the format of the robot
language. Moreover, it sorts the teaching points
according to number and matches each teaching point
in the robot program to the respective position.

2.4. Robot base positioning

Determining the robot base position of a workcell
via OLP is important. The primary aspects of the
robot base in a grand-assembly are: 1) the robot base
is located on the center between the left-bottom edge
and the right-bottom edge; 2) the distance from a
transversal stiffener is 700 mm; and 3) the robot base
is parallel to the workpiece plate. However, the
determination of the robot base of a workcell varies
according to the shape of a workpiece. For example, if
the transversal stiffener has a bracket of the direction
to the robot body, the robot base has to be moved
backward to avoid collision. At this time, an OLP
simulation is applied to decide whether the workpiece
is weldable or not, and to modify the robot base
position. After the robot base position is determined,
the robot program obtained from the automatic robot
program generator is calibrated to a job program
according to the modified robot base. Finally, the
modified robot base position is sent to the reference
position of the ROTU and the modified job program is
downloaded to the robot’s controller.

3. ROBOT ORIGIN TRANSFER UNIT

3.1. System description

Table 1 summarizes the specifications of the servo
motors used in the front and rear wheels. Other
detailed information of the ROTU is collected in
Table 2. Fig. 9 and Fig. 10 show the upper and lower
views, respectively, of the developed ROTU.

Fig. 11 is a schematic of the ROTU for the purpose
of analysis. Because the frame is rigid, the component
of 1V in the 'y axis must be equal to the
component of 2V in the 'y axis. That is,

0coscos 2211 =− αα VV , (1)

Table 1. Servo motor specifications.
 Diameter Max. velocity Torque
Rear wheel

driving 92 mm 52.1 m/min 9.8 Nm

Rear wheel
steering 92 mm 62 rpm 11.5 Nm

Front wheel
steering 107 mm 53 rpm 8.5 Nm

Off-Line Programming in the Shipbuilding Industry: Open Architecture and Semi-Automatic Approach 37

Ultrasonic proximity sensor

Front Rear

Direction indicator
Fig. 9. Upper view of the ROTU.

Ultrasonic distance sensor

Photo sensor : limit detector Rear wheel unit

Front Rear

Fig. 10. Lower view of the ROTU.

V1

V2

ω
Vb

ψ
ϕ

l

b

c
a

(x, y)

α1

α2

X

Y

α

x'

y'

A front wheel

Two rear wheels

Heading direction

Orientation direction

Instantaneous
center of rotation

Fig. 11. A schematic of the ROTU.

where 1α and 2α are the front- and rear-wheel
steering angles, respectively. Because the two
perpendicular axes of the moving directions of the

front and rear wheels intersect at an instantaneous
center of rotation, the angular velocity of the ROTU is
obtained as

a
VV

dt
d 2211 sinsin ααϕϕ

−
== , (2)

where ϕ is the angular displacement of the robot
body and a is the body length. Let the components
of the velocity of the body center in the 'x and 'y
directions be xV and yV , respectively. Then, they
are

ϕα cVVx −−= 22 sin , (3)

22 cosαVVy = , (4)

where c is the distance between the body center and
the driving wheel. Therefore, the velocity of the body
is calculated, using (3) and (4), as

22
yxb VVV +=

2

2

22
2

2
2

sincos

 +
+=

V
VcV αϕα . (5)

And the heading directional angle is defined as

αϕψ −= , (6)

where ()yx VV /tan 1−=α

 +
−= −

22

221
cos

sin
tan

α
ϕα

V
cV

.

If we define αα −=′ , then, (6) can be rewritten as

αϕψ ′+= , (7)

where

 +
=′ −

22

221
cos

sin
tan

α
ϕα

α
V

cV
. Finally, the

absolute velocity of the ROTU is

.sin
,cos

ψ
ψ

b

b

Vy
Vx

=
=

 (8)

Here, let the state vector be Tyxz],,[ϕ= ; then, the
state equation is obtained as

()ϕαα ,,, 212Vgz = , (9)

where

Table 2. Details of the ROTU.
Weight Max. pulling force Static pulling force Allowed load Length Width Height

72.5 kg 549.9 N 183.3 N 200 kg 774 mm 586 mm 209 mm

38 Ji-Hyoung Lee, Chang-Sei Kim, and Keum-Shik Hong

()

2
2 2 2

2 2
2

2
2 2 2

2 2
2

1 1 2 2

sincos cos

sincos sin

sin sin

c VV
V

c Vg V
V

V V
a

ϕ αα ψ

ϕ αα ψ

α α

 + +

 + ⋅ = +

−

.

3.2. Steering control using fuzzy reasoning

In this paper, a novel two-mode control scheme is
proposed, as depicted in Fig. 12. The first mode is the
steering control mode that steers x and ϕ to their
desired values. The second mode is the driving control
mode, in which the y-directional movement is
controlled using the rear wheel driving motor only.
The migration of the ROTU to its designated position
defined via the OLP is done after the welding robot is
lowered to the ROTU. Fig. 13 shows a top view of the
ROTU commissioned in a workcell.
The following variables are introduced: ix is the
initial X-directional position; iy is the initial Y-
directional position; iϕ is the initial rotational angle;

fx is the target X-directional destination position;

fy is the target Y-directional destination position;

and fϕ is the target rotational angle. Then, the
control problem is defined as a problem of steering
the ROTU from },,{ iii yx ϕ to },,{ fff yx ϕ . The
welding robot’s base position is defined as {O}, as
shown in Fig. 13, and then, the destination position of
the ROTU is 0=fx , 0=fy , and 0=fϕ in the
reference frame {O}.

3.2.1 The steering control

As shown in Fig. 13, the controller measures the
distance between the ROTU and the longitudinal
stiffener using four ultrasonic distance sensors. And
then the initial position, ix , is obtained as

)}(){(
2
1

4321 ddddxi +−+= . (10)

When the system is used in an open-type workcell, in
which the left or right longitudinal stiffener does not
exist, the equation

)}({
2
1

21 ddHWxi +−−= (11)

is used, where W is the width of the workcell and H is
the width of the ROTU. Also, the rotational angle iϕ
of the ROTU is defined as

Fuzzy inference
system

Ultrasonic
distance sensor

Kinematics

21,dd

x

ϕ
Motor control

: PID

d
1α

d
2α

21,αα

Collision
check

Front wheel
steering input

Rear wheel
steering input

Collision avoidance
algorithm

 x=xf

and

ϕ=ϕf

No

Yes

Rear wheel
driving

Motor control
: PID

mm/sec502 =dV
2V

Driving control mode

Steering control mode

43,dd

Fig. 12. Block diagram of the two-mode control scheme.

Fig. 13. The robot origin transfer unit operating in a
workcell.

CW

CCW

α1

α2 α1=α2

Fig. 14. Relation between the two steering angles and the

robot body direction.

d1

d2

d3

d4

x∆

ϕ∆
X

Y

a

Destination
point

Longitudinal stiffener

Transversal stiffener

{O}

},{ ffx ϕ

},{ iix ϕ

d5

d6

Longitudinal stiffener

Off-Line Programming in the Shipbuilding Industry: Open Architecture and Semi-Automatic Approach 39

 −
= −

a
dd

i
211tanϕ , (12)

where 1d , 2d , 3d , and 4d are the distances
measured by four ultrasonic distance sensors. Then, it
is necessary to check whether the ROTU is inside or
outside the collision area, determined by using the
ultrasonic proximity sensor signals, 5d and 6d
(see Fig. 13). If the ROTU enters a collision area, the
collision avoidance algorithm can be executed.
Otherwise, the steering control for },{ ϕx initiates.
While the ROTU is working, the controller monitors

5d and 6d to prevent a possible collision.
To simplify the steering problem, the driving

velocity, 2V , is fixed as ±50 mm/sec. And if we

define a reduced-order state variable as T
s xz],[ϕ= ,

then the control problem of (9) is simplified as

()ϕαα ,, 21ss gz = , (13)

where

()

2
2 2 2

2 2
2

1 1 2 2

sincos cos

sin sin
s

c VV
Vg

V V
a

ϕ αα ψ

α α

 + + ⋅ =

 −

.

In (13), the control inputs are the front wheel steering
angle, 1α , and the rear wheel steering angle, 2α .
Both of the steering angles are calculated by fuzzy
reasoning. The two inputs of this fuzzy reasoning are
x and ϕ , the current pose of the ROTU. The fuzzy
rule is based on the geometric relation of the steering
angles and the body rotation direction, as shown in
Fig. 14. For positive 1α and 2α , if 21 αα > , then
the ROTU rotates in the clockwise direction, and if

21 αα < , then the ROTU rotates in the
counterclockwise direction. The fuzzy membership
function is defined as a triangular type. The derived
fuzzy rules are shown in Table 3. In a defuzzification
algorithm, the center of mass method is applied to the
fuzzy reasoning. At each sampling time, the current
position and steering angle are calculated. The
obtained steering angle is used as a reference value in
steering.

3.2.2 The driving control

With the setting of all of the steering wheels to 0,
the ROTU moves only forward and backward until the
ultrasonic approximate sensor sends a signal to the
controller. When the ultrasonic approximate sensor is
tuned to detect the constant distance, the signal of the
approximate sensor indicates the Y-directional
destination position.

Table 3. Fuzzy rules for adjusting steering angles (NB
= negative big; NS = negative small; ZO =
zero; PS = positive small; and PB = positive
big).

(a) Front-wheel steering angle.
ϕ

x
NB NS ZO PS PB

NB PB PB PB PS ZO
NS PB PB PB PS ZO
ZO PB PS ZO NS NB
PS ZO NS NB NB NB
PB ZO NS NB NB NB

(b) Rear-wheel steering angle.
ϕ

x
NB NS ZO PS PB

NB ZO PS PB PB PB
NS ZO PS PB PB PB
ZO NB NS ZO PS PB
PS NB NB NB NS ZO
PB NB NB NB NS ZO

Table 4. Comparison of robot setting times.

 The developed
ROTU

Maker A’s
ROTU

Human
operator

Setting
time 16 sec 21 sec 30 sec

ROTU: robot origin transfer unit

Ultrasonic distance sensor

Forward driving mode ?

or

4321 ,,, dddd

boundcollisiond _1 <

boundcollisiond _3 <
or

boundcollisiond _2 <

boundcollisiond _4 <

Backward driving Forward driving

Continue driving

Yes No

Fig. 15. The collision avoidance algorithm.

3.3. Collision avoidance algorithm

The numbering of the subsection should take the
above form. A collision-free path for the robot is
essential to assure the safety and efficiency of the
process [12]. Therefore, to this end, a simple but
practical collision avoidance algorithm was developed,
as shown in Fig. 15. In measuring the distances 1d ,

40 Ji-Hyoung Lee, Chang-Sei Kim, and Keum-Shik Hong

2d , 3d , and 4d using four ultrasonic displacement
sensors, the controller avoids a possible collision of
the robot body. The dominant variables for detecting
collision are 1d and 3d for forward movement, and

2d and 4d for backward movement. If these
distances are included in the collision area, the driving
direction is switched to another direction. The
collision area is predefined, considering the size of the
ROTU and the working space of the robot, via OLP.

4. EXPERIMENTAL RESULTS

4.1. Implementation

The tools utilized in OLP are as follows. The PC
O/S of a Pentium IV 2.4 GHz processor with
Windows 2000 was used for computation, and Visual
C++ was used for programming. Open Inventor was
used to implement the graphic environment for the
OLP. Because Open Inventor is a graphic library that
provides collision detection algorithms, it is useful in
constructing graphic environments. To increase the
efficiency of the graphic processing ability, the
selection of a video card is very important. Hence, the
implemented video card has a 64 MB frame buffer
memory and a 128 MB texture memory. Also, the
video card was optimized to process Open GL. On
account of OOP, the user can selectively use each
function of OLP, which automatically performs all
functions in real time. Considering users’ convenience,
for the grand- and mid-assembly welding robot
systems, robot simulation and robot program
automatic generation functions were mainly used.

The ROTU is composed of a control panel, a
mobile robot, and a remote control box, as shown in
Fig. 16. The controller employs the Intel Pentium
MMX 233 MHz, 80Mb solid-state disk, which
prevents vibration and dust, a commercial 4-axis
motion controller, a signal I/O board, and the
Windows NT Embedded O/S. The encoder used in the
controller is an incremental type, and the resolution is
4,000 pulse/rev. Because the Windows NT Embedded
O/S allows the user to select the optimized component
in implementing a controller, the booting time and the
O/S size can be reduced significantly [8]. The
components and registry of our system are depicted in
Fig. 17.

4.2. Experimentation

The experimental results are shown in Fig. 18. The
sampling time was 300 msec. The experiments were
performed for the cases of the ROTU’s initial position
and rotation offset value that occurs frequently while a
robot operator unloads a welding robot in a workcell.
Table 4 compares the setting times of the developed
ROTU and Maker A’s ROTU with that of a human
operator.

I/F board

Motion control board

Servo ON

Industrial PC
: Pentium 2 processor

Servo error

D/I 4EA

D/O 4EA

U1, U2 V W

Control panel

Remote control pendant
D/O 5EA

Welding robot controller

Ultrasonic distance sensor
4EA

Ultrasonic approximity sensor
2EA

Motor encoders

Home/Limit sensor 4EA

D/I 2EA

A/D 1~5V

D/I 8EA

D/I 4EA

Encoder signal

PC-
BUS

Fig. 16. Hardware architecture.

- Workstation System
- Standard HAL
- EIDE
- VGA
- Keyboard

Minimal OS Configuration

- Lan manager Workstation Service
- NT LM Security Service
- WinSock
- TCP/IP

Networking Capability

- DiskOnChip As Disk
- OLE/COM
- Manual Shell
- FTP
- Regsrv32

Additional Component

- Motion Control Board
- Data Acqusition I/F Board
- HOTU Application

User Made Component

Operating System

Fig. 17. Windows NT embedded systems of the

controller.

5. CONCLUSIONS

To improve the user convenience and efficiency of the
welding robots in the shipbuilding industry, a PC-
based off-line programming methodology and a robot
transferring unit, named ROTU, were developed. The
developed OLP system provides both robot
simulations and automatic robot program generation.
Because the graphics were made in a VRML
environment, the developed OLP is highly compatible
with other software, which allows the use of OLP
through the Internet. Also, the mobile-robot-type
ROTU is very efficient in shortening the setting time
of the welding robot in various-size-and-shape
workcells. The quality and stability of the suggested
algorithms were verified through experiments. In
short, OLP helps operators to access the robot system
easily and the ROTU helps them to reduce their
physical efforts. The methodology outlined in this
paper is practical and can easily be applied to other
areas.

Off-Line Programming in the Shipbuilding Industry: Open Architecture and Semi-Automatic Approach 41

0 2 4 6 8 10 12 14

0

20

40

60

80

100

Body position x

Body angle ϕ

Rear wheel angle α
2

Front wheel angle α
1

St
ee

rin
g

an
gl

e
[d

eg
]

x-
di

re
ct

io
n

bo
dy

 p
os

iti
on

 [m
m

],
 B

od
y

an
gl

e
[d

eg
]

Time [sec]

-24

-18

-12

-6

0

6

12

18

24

(a) ix = 90 mm and iϕ = 0°.

0 2 4 6 8 10 12 14
-180

-160

-140

-120

-100

-80

-60

-40

-20

0

20

Front wheel steering angle α1

Rear wheel steering angle α2

Body position x

Body angle ϕ
St

ee
rin

g
an

gl
e

[d
eg

]

x-
di

re
ct

io
n

bo
dy

 p
os

iti
on

 [m
m

],
 B

od
y

an
gl

e
[d

eg
]

Time [sec]

-8

-4

0

4

8

12

16

20

24

28

32

(b) ix = 180 mm and iϕ = 0°.

0 2 4 6 8 10 12 14 16
-15

-10

-5

0

5

10

15

Body position x

Body angle ϕ

Rear wheel angle α
2

Front wheel angle α1

St
ee

rin
g

an
gl

e
[d

eg
]

x-
di

re
ct

io
n

bo
dy

 p
os

iti
on

 [m
m

],
 B

od
y

an
gl

e
[d

eg
]

Time [sec]

-24

-18

-12

-6

0

6

12

18

24

(c) ix = -9 mm and iϕ = 10°.

0 2 4 6 8 10 12 14
-12

-6

0

6

12

18

24

30

36

Body position x

Body angle ϕ

Rear wheel angle α2

Front wheel angle α
1

St
ee

rin
g

an
gl

e
[d

eg
]

x-
di

re
ct

io
n

bo
dy

 p
os

iti
on

 [m
m

],
 B

od
y

an
gl

e
[d

eg
]

Time [sec]

-24

-18

-12

-6

0

6

12

18

24

(d) ix = 30 mm and iϕ = -10°.

Fig. 18. Experimental results.

REFERENCES
[1] T. H. Bui, T. T. Nguyen, T. L. Chung, and S. B.

Kim, “A simple nonlinear control of a two-
wheeled welding mobile robot,” International
Journal of Control, Automation, and Systems,
vol. 1, no. 1, pp. 35-42, 2003.

[2] G. C. Carvalho, M. L. Siqueira, and S. C. Absi-
Alfaro, “Off-line programming of flexible
welding manufacturing cells,” Journal of
Materials Processing Technology, vol. 78, no. 1-
3, pp. 24-28, 1998.

[3] J. J. Craig, Introduction to Robotics: Mechanics
and Control, Addison-Wesley, 1986.

[4] G. Ferretti, S. Filippi, C. Maffezzoni, G. Magnani,
and P. Rocco, “Modular dynamic virtual-reality
modeling of robotic systems,” IEEE Robotics
and Automation Magazine, vol. 6, no. 4, pp. 13-
23, 1999.

[5] J. F. Garder and S. A. Velinsky, “Kinematics of
mobile manipulators and implications for
design,” Journal of Robotic Systems, vol. 17, no.
6, pp. 309-320, 2000.

[6] C. S. Kim, K. S. Hong, and Y. S. Han, “PC-
based off-line programming in shipbuilding
industry: open architecture,” Advanced Robotics,
vol. 19, no. 2, 2005.

[7] N. Kobayashi, S. Ogawa, and N. Koibe, “Off-
line teaching system of a robot cell for steel pipe
processing,” Advanced Robotics, vol. 12, no. 3,
pp. 327-332, 2001.

[8] S. D. Liming, Windows NT Embedded Step-by-
Step, Annabooks, 2000.

[9] R. M. Murray, Z. Li, and S. S. Sastry, A
Mathematical Introduction to Robotic
Manipulation, CRC Press, 1994.

[10] R. M. Murray and S. S. Sastry, “Nonholonomic
motion planning: Steering using sinusoids,”
IEEE Transactions on Automatic Control, vol.
38, no. 5, pp. 700-716, 1993.

[11] A. G. Mutambara and H. E. Durrant-Whyte,
“Estimation and control for a modular wheeled
mobile robot,” IEEE Transactions on Control
Systems Technology, vol. 8, no. 1, pp. 35-46,
2000.

[12] I. Namgung, “Application of quadratic algebraic
curve for 2D collision-free path planning and
path space construction,” International Journal
of Control, Automation, and Systems, vol. 2, no.
1, pp. 107-117, 2004.

[13] Y. Nagao, H. Urabe, F. Honda, and J. Kawabata,
“Development of a panel welding robot system
for subassembly in shipbuilding utilizing a two-
dimensional CAD system,” Advanced Robotics,
vol. 14, no. 5, pp. 333-336, 2000.

[14] T. Ogasawara, K. Hashimoto, M. Tabata, M.
Komatsu, T. Hara, and Y. Kanjo, “Application of
multi-robots control technology to shipbuilding

42 Ji-Hyoung Lee, Chang-Sei Kim, and Keum-Shik Hong

panels,” Journal of the Robotics Society of
Japan, vol. 16, no. 1, pp. 46-47, 1998.

[15] Y. Okumoto, “Advanced welding robot system
to ship hull assembly,” Journal of Ship
Production, vol. 13, no. 2, pp. 101-110, 1997.

[16] G. C. Pettinaro, “Behavior-based robot program
invariance,” Robotica, vol. 19, no. 2, pp. 217-
231, 2001.

[17] Y. Sugitani, Y. Kanjo, and M. Murayama,
“CAD/CAM welding robot system in steel
bridge panel fabrication,” Journal of Japan
Welding Society, vol. 13, no. 1, pp. 28-38, 1995.

[18] J. Wernecke, The Inventor Mentor: Program-
ming Object-Oriented 3D Graphics with Open
Inventor, Open Inventor Architecture Group,
1994.

[19] D. Wang and F. Qi, “Trajectory planning for a
four-wheel-steering vehicle,” Proc. of IEEE
International Conf. on Robotics and Automation,
pp. 3320-3325, 2001.

[20] J. M. Yang and J. H. Kim, “Sliding mode control
for trajectory tracking of nonholonomic wheeled
mobile robots,” IEEE Transactions on Robotics
and Automation, vol. 15, no. 3, pp. 578-587,
1999.

Ji-Hyoung Lee received the B.S. and
M.S. degrees in Mechanical Engineer-
ing from Kon-Kuk University, Seoul,
Korea, in 1992 and 1994, respectively.
Since 1994, he has been working with
the Department of Factory Automation
in Hyundai Heavy Industries Ltd.,
Korea. He is currently a Ph.D.
candidate in the Department of

Mechanical and Intelligent Systems Engineering, Pusan
National University, Pusan, Korea. His research interests
include robotics, adaptive robust control, factory
automation, visually guided tracking systems for welding,
and open architecture systems.

Chang-Sei Kim received the B.S.
degree in Control and Mechanical
Engineering from Pusan National
University in 1998 and the M.S.
degree in Mechanical Design and
Production Engineering from Seoul
National University in 2000. Since
2000, he has been working with the
Robot Research and Development

Team in Daewoo Shipbuilding and Marine Engineering
(DSME), Korea, as a researcher. In DSME, he has
developed welding robots, painting robots, and factory
automation devices. His current research interests include
nonlinear robust control, robotic systems, hydraulic systems,
and control system applications.

Keum-Shik Hong for photograph and biography, see p. 449
of the December 2004 issue (vol. 2, no. 4) of this journal.

